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CHAPTER I 

INTRODUCTION 

This chapler contains a statement of the problem considered in the 
dissertation, the motivation for considering the problem, a summary of 
the contents, and a brief survey of the literature on the control of 
electromagnetic scattering from radar targets. 

The objective of the research reported herein is to investigate 
the application of impedance loading techniques for the reduction of 
backscatter from radar targets.    A primary goal is to achieve tech- 
niques for miniimting backscatter by controlling edge diffraction 
sources.    Edges are major contributors to backscattering for many 
scattering geometries such as wing structures and finite conical 
shapes. 

The suppression of scattering is a camouflage problem, but over 
the years the development of techniques for the reduction of specular 
contributions has received most attention.   Although the specular 
contributions tend to be restricted in the aspect angles for which they 
occur, they dominate the net return whenever they are present.    Mow- 
ever, the specular echoes are amenable to suppression using radar ab- 
sorbers.   On the other hand, non-specular scattering is more pervasive. 
Even if all specular echoes are suppressed, the non-specular scattering 
still can generate radar returns of unacceptable magnitude.    In fact, 
modern aerospace vehicles are often not seen at specular aspects in a 
tactical environment.    But the non-specular radar cross section can 
still reach levels that increase the probability of detection.    It is 
therefore important to study the backscatter reduction for non-specular 
aspects. 

In Chapter II the impedance boundary condition and the integral 
equations appropriate in an antenna and scattering problem are ex- 
amined.    The low frequency numerical technique, the method of moments, 
and the high frequency wedge diffraction theory are also discussed. 
These theories provide the necessary theoretical background for the 
applications in the later chapters. 

Chapter III presents the hybrid methods which combine the 
Geometrical Theory of Diffraction (GTD) and the Method of Moments. 
These hybrid methods can be used to treat problems which can not be 
solved by either 6TD or moment method alone. 



In Chapter IV, the hybrid methods are applied to study the back- 
scatter reduction from various geometries such as the infinite wedge, 
the thin strip and a two-dimensional wing model.    The loadings required 
for optimum reduction are also shown. 

In Chapter V, the scattering from a thin square plate loaded with 
a slot has been studied as a way of implementing the required antenna 
impedance loading.    The effect of loading as a function of frequency is 
also presented. 

A considerable amount of effort has been devoted to the reduction 
of backscatter from various radar target geometries [1,2,3,4] over the 
years.    For modifying the radar cross section of scattering bodies, 
two techniques have been used either separately or jointly; shaping of 
the body and coating of the body with radar absorber.    Recently, the 
surface impedance model of absorber and the integral equations were 
used by Knott et al. [5,6,7] to study the nor-specular radar cross 
section. 

A more encouraging method of reducing radar cross section is the 
antenna impedance loading techniques [8,9].    The scattering from a 
conducting object can be controlled by loading portions of its 
surface with distributed or lumped impedances.   The scattered field 
from a loaded object can be expressed as a superposition of fields 
scattered by the unloaded object and fields reradiated by the loading. 
The interference c    these fields can therefore be used to control the 
scattering.    The impedance loading technique has been applied to dipole, 
cylindrical and loop antennas to minimize the radar cross section [10,31]. 
The backscatter reduction in the broadside direction for a small plate 
loaded with an open or short circuited slot was investigated by 
Green [32]. 



CHAPTER II 

THEORETICAL BACKGROUND 

A. Introduction 

In this chapter the impedance boundary condition and the integral 
equations appropriate in an antenna and scattering problem will be 
examined.    The purpose of this study is to show how the equations 
are affected by the geometry and the boundary conditions.   A general 
procedure for solving linear equations, the method of moments, will 
be discussed.    The wedge diffraction solution, which is a very im- 
portant part of the Geometrical Theory of Diffraction, is also 
presented.    Each of these solutions are presented in their basic 
terms in this chapter and applied to specific problems in the fol- 
lowing chapters. 

B. The Impedance Boundary Conditions 

In its most straightforward form an impedance boundary con- 
dition [11] is one which relates the tangential components of the 
electric and magnetic fields via an impedance factor.   The impedance 
factor itself is a function of the properties of the surface.    The con- 
ditions are widely used in diffraction problems and the analysis of 
surface wave phenomena.    In this dissertation, the surface impedance is 
employed to represent a loaded slot.    Consider a closed cylindrical 
surface whose generators are parallel to the z axis of a cylindrical 
coordinate system and whose profile in a plane perpendicular to the z 
axis is the closed curve c.    Let n be an outward unit vector to c and let 
t be a unit vector in the tangential direction, such that t, n and z form 
a right-hand system.   Then, on the surface, the impedance boundary con- 
dition is given by [12,13] 

(1) E - (n-ftn = Zs n x H 

where E and H are the total electric and magnetic field, respectively, 
in the region surrounding the body, which is that of free space for 
the radar environment and Zs is the surface impedance.    Zs may be a 
function of distance t along the cylindrical surface c.    For a perfectly 
conducting surface, Zs = 0.    Equation (1) can alternatively be ex- 
pressed as [12,13] 

(2) H - (n-H)n = - ^- n x t 
s 

Equation (2) is the dual of Eq. (1) and is not valid if at any point 
on the surface Z   is zero. 



C.     The Reaction .ntegral Equation 

The reaction concept and its applications have been discussed by 
Rumsey [14], Cohen [15], Harrington [16] and Richmond [17].   The 
reaction integral equation has been used extensively by Richmond [19, 
30,33]. 

Let us consider the application of Schelkunoffs surface equiva- 
lence principle [18] to the exterior scattering problem illustrated in 
Fig. la.    In the presence of a dielectricjDrj;onducting oody, the 
external electric and magnetic c^rr^nts (Ji,Mi) generate the electric 
and magnetic field intensities (E, it).    For convenience, assume the 
exterior medium is free space. 

According to the equivalence principle, if we introduce the fol- 
lowing surface current densities 

(3) J^ = n x H 

(4) Ms = E x n 

on the closed surface S of the scatterer, the interior field will 
vanish, without disturbing the exterior field.    Since the field in- 
ternal to S is zero, as illustrated in Fig. lb, we can replace the 
scatterer by free cpace without d.ist.urbing the field anywhere.    By 
definitign^the incident field (Ei,H-i) is generated by the external 
source (J^M.) in free space, and the scattered field is: 

(5) V ? " fi 

(6) Hs = ^ " "i  ' 

From the superposition priacißle and the uniqueness theorem, we know 
that the surface cuncpnt^ (0s»Ms) which radiates in^fre^ space will 
generate the field (Es,Hs)   in the exterior and (-E..,-H.) in the 
interior region, as shown in Fig. 1c. 



(E.H) 

Fig. la—Tjie^source (J-j ,M-j) generates the field 
(E,H) with scatterer. 

NJ 

(E.H) 

(J•lM•, I   8CATTERER 
OR 

FREE SPACE 

Fig. lb--The interior field vanishes when the current (Js,Ms) 
are introduced on the surface of the scatterer. 

(E..H,) 

I 
FREE SPACE' 

Fig. lc--Tlie ^xterior scattered field may be generated by 
(J ,M ) in free space. 



With the scatterer replaced by free space and the equivalent 
current on its surface S, we have noted in Fig. lb that the interior 
region has a zero field.   Now let us place a test source or probe in 
the interior region, as shown in Fig. 2, and consider its reaction with 
the other sources.    If the test source has electric current density J*t 
and magnetic current density"Ml, the reaction principle gives ' 

(7)    || (vvfvf^ds = - ||(JVi-VH>s 

where (Es,Hs) is the scattered field generated by (0^,Rs)» and the 
integrals extend over the surface of the test source.   Equation (7) 
is one form of the reaction integral equation (RIE).   As noted by 
Richmond [19], the RIE is more general than the electric field integral 
equation (EFIE) or the magnetic field integral equation (MFIE).    If we 
enforce Eq.  (7) with a set of delta-function electric test sources, the 
RIE reduces to the EFIE.    If we enforce Eq.  (7) with a set of delta- 
function magnetic test sources, the RIE reduces to the MFIE. 

From Eq. (7) and the reciprocity theorem, we obtain another form 
of the reaction integral equation: 

(8) $ tfs.tt - tf^ds + HI (t..ft - fT-.^dv = 0 

where (tt.fTt) is the field of the test source radiating in free-space. 
In words, Eq. (8) states that the interior test source has zero re- 
action with the other sources.   This zero-reaction was developed by 
Rumsey [14]. 

Combining the impedance boundary condition, Eq. (1), with the 
equivalent current equations, Eqs. (3) and (4), gives: 

(9) Ms = Zs ;fs x n . 

Equation (9) is another form of the impedance boundary condition.    For 
two-dimensional problems involving cylindrical scatterers, ds and $$ 
are functions only of the position t around the cylindrical surface c. 
If ^ vanishes, Eqs. (8) and (9) yield 

(10) 6 ;fs • [tt - (n x Ht) Zs]dt = || ^  • tft ds. 



(J«.MS) 
FREE  SPACE 

FREE SPACE 

Fig. 2—A test source (Jt,Mt) is placed in the interior region 
of the scatterer. 

D.     Method of Moments 

The method of moments [20] is a general procedure for solving 
integral equations.    It is widely used, with the help of high speed 
digital computers, in solving low-frequency electromagnetic antenna 
and scattering problems.   Consider the linear inhomogeneous equation 

(11) LoP ^ = E 

where Lop isja linear operator, E is a known excitation function or 
source, and J is the unknown response function to be determined. 
Equation (11) may be the RIE, EFIE or MFIE. 

The procedure for obtaining an approximate solution to Eq. (11) 
can be summarized as below.    First, expand the unknown function in 
a series of basis functions ',n the domain of the operator L    , as 

(12) £:   n   n 



Substituting Eq.  (12) into (11) gi>es 

The next step is to define a set of weighting functions w,, w« ••• in 
the domain of L     and then form the inner product fc 

(14) 1   0n<   Wn,>    LA„   J  >     =  <W„,    E>. JJ   n     in    op   n m 

Equation (14) is a set of linear equations which can be solved fcr the 
unknown o   by numerical techniques. 

Two special cases of the moment method are of particular im- 
portance in electromagnetics, namely; the Galerkin's method and the 
point matching technique.   The Galerkin's method uses the same set of 
functions as the expansion and weighting functions,    It requires the 
evaluation of integrals which may be tedious and computationally ex- 
pensive.   This difficulty can be minimized if one uses point matching 
which uses the Dirac delta functions as testing functions. 

E.     Wedge Diffraction 

Wedge diffraction is a useful tool in the analyses of high- 
frequency electromagnetic problems.   The asymptotic solution for 
the diffraction from a conduting wedge was first obtained by 
Sommerfeld [21].    Originally, GTD [34] as applied to diffraction by a 
wedge was based on plane wave diffraction coefficients; however, as 
shown by Russo, Rudduck and Peters in Refs.  [22,41], the use of dif- 
fraction of cylindrical waves has been found necessary in the treatment 
nf antennas.    Consequently, different formulations of wedge diffraction 
were substituted for the plane wave diffraction coefficient which is the 
basis  For wedge diffraction theory.    Pauli [23] introduced the Vß 
function as ? practical formulation to the solution for a finite-angle 
conducting wedge.    Recently, however, Hutchins and Kouyoumjian[24, 
25] presented a formulation for the diffracted field (Vß), which sig- 
nificantly improves the acctracy over that obtained from Pauli's 
form. 

This improved diffraction solution [24,25] is better in the 
transition regions (near the incident and refleted shadow boundaries). 
It can be written in the form 

(15) VB(L.ß,n) = I^d.ß.n) + I+iT(L,e.n) 



where 

I    (L,ß,n)~ Ja cot irtg 
2n 

JkLa 

(kLa) 1/2 
e'jT   dx + [higher ordfr terms] 

where the higher order terms are negligible for large kr and 
with n defined from the wedge angle WA =(2-n)TT, also a = 1 + cos{ß - 
2nTTN) and N is a positive or negative integer or zero, whichever most 
nearly satisfies the equations 

2nitN - $ - for I 

2nTiN - ß = +IT     for I, 
+11 

Consider a plane electromagnetic wave normally incident on a wedge 
of angle (2-n)iT as illustrated in Fig. 3.    Cylindrical coordinates 
are employed here with the z-axis coincident with the edge and con- 
sequently normal to the plane of diffraction.    The z-component of the 
total field at observation point P{r,i|;) may be represented by the 
scalar function u, given by 

(16) ulr^.n) = V(r,>|;- Vn) V(r,ii)+^0.n) 

The minus sign applies for the boundary condition u = 0 on the wedge 
surface; thus the solution is valid for the electric field oriented 
in the z-direction (parallel to the edge).    The plus sign applies 
for the normal derivative of u equal zero on the wedge surface, or 
the magnetic field oriented in the z-direction (polarization per- 
pendicular to the edge).   The quantities \/(r,()),n) represent the 
separation of the solution into incident and reflected waves and 
ere given by 

(17) V(r.<M) = VMr^.n) + VB(r,*,n) 

where V* is the geometrical optics wave which is given by 



f, 
(18) V*(r,<j.,n) 

exp[jkr cos((()+2iTnN)], if -Tr<4.+2TrnN<Tr 
for N=0, ±1,±2 

0,   otherwise. 

INCIDENT  SHADOW 
BOUNDARY       

/REFLECTION  SHADOW 
-«i-^ BOUNDARY 

Fig. 3—Diffraction of a plane wave by a conducting wedge. 
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CHAPTER III 

HYBRID METHODS 

A. Introduction 

For many years, GTD has been applied to high-frequency antenna 
and scattering problems for which the structure is large in terms of 
wavelength.    GTD solutions have mainly been used in pattern com- 
putations with little information concerning antenna impedance 
and/or aperture distribution.    This is especially true for wire- 
type antennas.    On the other hand, the method of moment has been 
applied to low-frequency problems for which the structure is small 
in terms of wavelength. 

A hybrid method (MMGTD) to combine the GTD and th^ Moment 
Method was used by Burnside [27,28] to investigate the scattering 
of a TE plane wave by infinite conducting structures.    In this 
chapter, the original hybrid method is extended to treat infinite 
geometries with local inhomogenities which can not be solved by 
either GTD or moment method alone.    While the method gives good 
results for finite geometries, it fails to predict the fields of 
infinite structures accurately.    A modified hybrid method, which is 
more accurate and economical  in computation, is introduced.    The modi- 
fied method can be applied to geometries with local surface impedance 
if the surface current density for the conducting case is known.    The 
modified method was first suggested by Rudduck. 

B. A Hybrid Method 

Consider the scattering by a simple perfectly conducting wedge for 
a TE plane wave incident as shown in Fig. 4. At the field point (P,IJO, 
the incident field is given by 

• jkp cosU-,1, ) 
H^(D.V) = e 0       for jr^0|  < 18^  . 

The reflected field from the wall along the x-axis of Fig. 4 is given 
by 

jkp cosU+ij, ) 
lfz(p^) = e 0       for |^0|  < 180° 

The diffracted field can be expressed as [26] 

H!|(P^) = VB(p,ijr^0.n) + VB(p,^0,n). 

11 



PERFECTLY 
CONDUCTING 

WEDGE 

WA«(2-n ) ir=j9 

V    \    \    V    \.   V    V   V    \    \^      \     X    V    V    V    v   \ 

00 

PLANE  WAVE   INCIDENCE 

Fig. 4--Plane wave diffraction by conducting wedge. 

OBSERVATION 
POINT 

If the observation point is not in the vicinity of a shadow boundary 
(^o = 180°) and for p sufficiently large, the diffracted field can 
be expressed by [26] 

(19) H°(p^) ^ [DU-^.n) + DU+^.n)] 
-jkp 

where 

DU.n) a _ e 
•i %■ J 4 1  ^^« T 

;r sin « n        n 

cos ;: - cos ;£- 
n n 

is the asymptotic diffraction coefficient in 6TD.    The total magnetic 
field can then be expressed, using the above form of the diffracted 
field, by 

12 



(20) H*(p^) = H^ + Hj + H^ 

%   Hj + H^ + C(^^0,n) S  

where C is independent of the range (p).    The total surface current 
density on a perfectly conducting surface can be obtained by applying 
the boundary conditions, and is given by 

J Mn x z)H* 

where n is the unit outward normal vector to the surface. Using the 
GTD solution for the total magnetic field, the total surface current 
density along the wedge walls is given, for p sufficiently large, by 

(21) ?lü- (n x 2) [HJ + Hj + H^] 

^   J1 + r + (n x z) C{^,^,n) §  . 

Equation (21) is also valid for wedges with local  inhomogenities around 
the tip, assuming that the wedge surface is not in the vicinity of a 
shadow boundary and p is sufficiently far away from the local in- 
homogenities. 

Note that C is now assumed to be an unknown constant, although it 
can be obtained from a canonical solution for the perfectly conducting 
case.    The hybrid approach can be applied to a set of problems where 
the coefficient C is not known at the outset. 

The magnetic field integral equation for cylinders with arbitrary 
anisotropic surface impedance is given by [29] 

(22) -HJ(s') =|-J(s') +||    -Y-Js(s)   H<2)(k|fr-ff|)ds 

+ ik    f    (s)     üjlhlL   H{2)(|<|^  -^|)ds 
Js |P -p| 

where the time dependence is assumed to be e J     and is suppressed, the 
integrals are extended over the contour S of the cylinder cross section, 

13 



n is the outward normal to the contour S, and ng is the intrinsic im- 
pedance of free space.    Consider the impedance-loaded wedge structure 
as illustrated in Fig.  5, the total surface current density can be 
defined by 

(23) 

,670 

i   - J iMM 

,610 

m 

,GTD , 
v 

h    < h < c —    — 

0 < h < h. —    —  c 

X     <   X  <  «> c —    — 

0 < x < x,. —    —  c 

on h-wall 

on h-wall 

on x-wall 

on x-wall 

where J       is defined by Eq.  (21) which is valid only away from the 
impedance or the tip.    The method of moment current (jMM) around the 
inhomogenities can be defined by simple basis functions such as 

(24) ^M N 

„fr-i    m m       m' 

where pm(s-s ) are orthogonal pulse functions with weight o^. 

Applying the point matching technique at the midpoint of each of 
the N pulse segment, one obtains 

(25) 
N 

nv 
I    ai      + LfjJ10) + Ln(jf

D) = gn ^i    m nm      nx h    '       nv x   '     'n 

for 1 < n < N 

where 

\n 
£nm = 

^ "<• 

2     "   "o       " 

w^.fu.^^HL H(2Vi?n-?i) 
Ipn-P   I 

2 (■YkASr 

ds 

n#n 

m=n, 

14 



GTO    MATCHING      ^ 
POINT ALONG   h-WALL^< ^T  *^ 

GTD REGION 

GTD MATCHING   POINT 
ALONG  X-WALL 

PLANE WAVE 
INCIDENCE 

Fig. 5—Impedance loaded wedge applied in hybrid methods. 

e = 2.71828, 

Y =1.781.. is the Euler's constant. 

and 
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(26) 

^GTD 

,670 t- H<2Vl?n-?I) 

VPn-p )*"       /o\     ^   ^ 

lpn - p I 
ds 

Note that the first term in Eq. (26) vanishes because Zs = 0 in the 
GTD region.    Substituting Eq.  (21) into Eq. (25) gives 

(27) I   ot *     + L   J? + Jj" + D.  £— ^   mnm      n   h       h       h y^ 

jkh 

+ L IJ' + Jr + D    - nl  x       x       x 

-jkx^ 

JT 
Q       1 < n < N n        —    — 

where the second term exists on the h-wall and the third term on the 
x-wall.   Since the incident and reflected currents (J1 and Jr) can be 
easily obtained by geometrical optics, they can be transferred to the 
source side.    Since Dv and D^ are just complex constants, by applying 
the linear property of the operator L , Eq.  (27) can be written as 

(28) 

where 

-jkh 
J, V™ + Vn   Tf ■Vr 

.-jkx 
= g'      for 1 <^ n £ N 

9r - ""I« W " Ln<Ji+0x) " ^M) 

-Jkx 
Q 

x 
n. 

n(2)ai"  "MM (V^,n |,(2)f,cr -n H
0   (klpn-pl)+J-r-^i—Hi   (klpn-p|) 

-jkx' 
dx' 
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(30)    L i £ikhv k rc z 

i=Ha 
H^^MV^IWI^   H{2)(k|?n-?|) ,(2), 

|Pn "PI 

e-jkh' 
dh' 

k 
4 

(31)Ln(jX)^ 

.(2). (P -pVn «(2), .-^   -^. H^;(k|pn-p|H-f3--H{^(k|^|) 
|Pn-p| 

jkx'cost|/. 
x e dx'     for 0° < A   < 180c 

— To — 

otherwise 

U.!^ 02) Ln(j;+jp^ 

n 
(pn-p)-n l_„(2)(k|?.?|W^Z^u(2) 

"o      0 n 
IVPI 

Hfy(k|pn-p|) 

jkh,cos(e-1800+i|/ ) 
x e 0 dh'    for 1800-ß<«0<3600-ß 

otherwise . 

So far, we only have N equations obtained by point matching in 
the moment method region.    However, there are N+2 unknowns, N coeffi- 
cients of the current pulses («n's) in the moment method region and 
two diffraction coefficients (Dx and Dh), one in each GTD region. 

Two additional equations are obtained by introducing one addV'onal 
matching point in each of the two 6TD regions.   Matching at (Xj.O) on 
the x-wall gives 

17 



N /^-JkhA    1        /
jkxa 

(33) I    am^nm 
+ Dhk 

m=l \ JiT  j 
1+ ^ D e 2  x  n d 

(34) 

= -H;(xd.o)-i(jX)x=Xd-LnK+Jh
r) 

Similarly, matching on the h-wall  gives 

N 
I 

(TFl 

= -H>=hd)    - i    (J^h
r)h=hd-Ln(J>J^   • 

Now we have N+2 equations to solve for N+2 unknowns. This system 
of simultaneous linear equations can be easily solved by the numerical 
matrix inversion technique- 

The integrations over the GTD region are infinite in theory; how- 
ever, in fractice, one can approximately carry out the integration 
over a finite region because the Hankel function causes the integrand 
to become negligible for large value of P'. 

The above approach is valid except near the shadow boundaries. 
In order to solve for the diffracted currents on or near a shadow 
boundary one should represent the diffracted currents in terms of an 
infinite series as given by [28] 

However, in practice, if the currents are analyzed directly along a 
shadow boundary, then the diffracted current can be simply expressed 
by [28] 

Jd = C0 e* . 
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The hybrid method gives good results for finite bodies.    But it 
fails to determine the diffracted field of an infinite structure 
accuretely.    The values of Dh and Dx are found to be sensitive with 
respect to the position of the GTD matching points in the case of 
infinite geometries.   This appraoch also reguires extensive numerical 
integration to evaluate the coefficients L (J"'U) and the excitation 
g' of the matrix equation, n 

C.     A Modified Hybrid Method 

The key to the modified hybrid method is to separate the total 
surface current of the impedance-loaded wedge into two components, 
namely:    the current for the perfectly conducting case, Jc: and the 
change in current due to the presence of the surface impedance, &J. 
Substituting J = J   + AJ into Eq.  (22) gives 

(35)    -HJ(S') = jOc(s') +|-j   ^-Jc(s) Hj2)(k|^-;|)ds 

+ ikf   J(s)iL^H{2)(kr;'-?|)ds 

s no 

1  .i/-i\J- k|    ±AMC\ U(2), + 4-AJ(S')+|      ^-AJ(S)   H^^(k|p'-p|)dS 
HJs  "o 

+ f f    AJ(s)^^H{2)(k|^-?|)dS   . 
Js IP'-PI 

Since J   satisfies the special case, Z =0, of the integral equation, 
i.e.,   c 

(36) HJ(s') = i-Jc(s') + $■ f   J (s)  ^P'-^-"   H{2)(k|^^|)ds 
Z Z      C 4       Jc      C l^'-^l ' 

Eq. (35) reduces to 

19 



(37)    -|f   -=; J (s)H^)(ki"-H)ds = i:,J(s') 
•so 

+ U   i_ ,j(s)H(2)(ki^-;i)ds + f f .0(5) %4^ 
■'so -'s '. ' -. ! 

•  HJ2)(k|^-r|)ds  . 

Define the change in surface current density as 

AJ h    < h < :" on h-wall 
c -     — 

MM 
AJ 0 < h < h on n-wall 

- —   c 
i 

"J =1»iGTD ,. 
iAJ x   1 x 1 " on x-wal i 

AJ 0 < x < x on x-wall 
- -   c 

where AJ       has the form of AD (e"J f )//P". and the moment method 
incremental current can be expressed in terms of simple orthogonal 
pulse function, such as 

AJMM=    I   ,.   P(s-s  )  . -,      m    nr      in' 
111=1 

By point matching at the center of each pulse, one obtains 

N /P-Jkxi |p-Jkh 

(38) I    ha^ + ADvLn    -r—K iDh Lj p=—:= gn    1  < n < N A       mmn x n^    j       h    nr^-     ,      n         

where  i.     and L    are the same as in section B and 
mn n 

(39) gn -  " ^ f     ^—Jr(s)H(2)(k!"vl)ds   . 
•'s '0 

20 



Again, two additional equations will be obtained from the matching 
in the 6TD regions.    A system of N+2 simultaneous linear equations 
will be solved for Act's and äD . AD., by numerical matrix inversion 
technique. m x       n 

It should be noted that two of the integrals in Eq.  (37) are 
limited to only the contour where Zs is non-vanishing.    Consequently, 
for conducting scatterers with small inhompgenities with Zs ^ 0 
those two integrals can be readily and accurately evaluated.    Further- 
more, as a consequence of separating the current Jc for the perfectly 
conducting body, the geometrical optics currents are not included 
in the third integral of Eq.  (37) which involves AJ.    Thus the third 
integral converges rapidly because only diffracted components are 
included in /J.    Those features of the AJ approach result not only 
in significantly improved efficiency, but also provide reasonable 
accuracy for the diffracted fields.    Computer solutions of the integral 
equations typically result in accuracies of a few percent.    Thus AJ 
and the resulting diffracted current can be calculated to within a 
few percent.    However, the original   .ybrid method of Eq.  (22) yields 
the same accuracy for the total current.    This results in very poor 
accuracy for the diffracted component which is typically a small 
fraction of the total current.    This "AJ" approach has then a 
distinct advantage if one wishes to isolate the diffraction of some 
isolated anomally in the presence of an edge. 
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CHAPTER IV 

THE REDUCTION OF BACKSCATTERED FI LD — TWO-DIMENSIONAL CASE 

A. Introduction 

Edge diffracted fields become a domina.it contributor to the scat- 
tered fields for a wide variety of geometries.    These usually are 
significant when the observation point is not illuminated by a specular 
field.    Some examples include:    the cone for near axial incidence, the 
leading or trailing edge of a wing for sufficiently low frequencies. 
These fields are generally considered to be low but this is only 
when considered with respect to the specular contribution from a 
surface. 

It is the goal of this study to achieve further reduction of 
back scattered fields from the edge diffraction mechanism over 
reasonable range of incidence angles and broad frequency band by use 
of antenna impedance loading.    Absorbing material was often used in 
the study of backscatter reduction.    However, it is usually necessary 
to cover a substantial part of the body of an aircraft or space craft. 
The presence of a large absorber could seriously affect the performance 
of the aircraft.    This is not desirable because it would require the 
redesign of the whole aircraft structure.    In this chapter, the 
possibility of designing an antenna to scatter energy at least in 
some direction or range of directions in such a way to cancel or 
reduce the edge diffracted field in that range of direction is con- 
sidered.    Surface impedance is used to model slot antenna.    The hybrid 
methods discussed in Chapter III are employed to treat various geometries 
and the results for optimum loading are also presented. 

B. The Triangular Cylinder 

The reaction integral equation and the Galerkin's method with a 
piece-wise sinusoidal basis, developed by Richmond [30], is used to 
study the scattering by a two-dimensional, triangular wedge-shaped 
cylinder.    The scattering geometry of a triangular cylinder is quite 
suitable for providing information on the effectiveness of impedance 
loading for backscatter reduction.    Furthermore, this geometry provides 
efficient numerical results.    Results on optimum loading configurations 
obtained from this geometry will be directly applicable to a wide 
variety of scattering geometries such as conical shapes and ogive 
shape or similar wing structures. 

In order to isolate the effect of the impedance loading a source 
excitation is being used that consists of two line sources located on 
the cylinder surface and phased to null out the effect of the other 
edge.    The wedge-shaped cylinder without impedance loading can readily 
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be analyzed by the GTD or wedge diffraction approach. The wedge dif- 
fraction analysis for the unloaded cylinder was programmed as a check 
case. The value of the wedge diffraction check was demonstrated when 
it revealed an insufficient number of piece-wise sinusoidal monopoles 
were used in the reaction integral equation program. The results ob- 
tained by using 4 segments in one wavelength and the GTD results are 
shown in Fig. 6. The difference between these two results is sig- 
nificant. However, if 8 segments in one wavelength are used, the 
result agrees well with the GTD result (see Fig. 7). 

Due to limitations on the dimensions of the wedge cylinder that can 
practically be used in the reaction integral equation program on the 
DATACRAFT 6024 computer, results can only be obtained for cylinders 
on the order of 2.5X or smaller in width.    However, several promising 
results have been obtained using the integral equation program.    These 
results indicate that considerable reduction can be achieved in 
the backscattering from the edge diffraction mechanism.    In one case 
a reduction of 14 dB was obtained using a real impedance loading of 
377 ohms located right at the edge as shown in Fig. 8.    The com- 
puted results also show that similar reduction can be achieved by a 
reactive loading of Z   = -jl88 ohms located 5/8x from the edge, as 
shown in Fig. 9. 

The backscattered fields of such a wedge geometry have also been 
computed as a function of incidence angle and surface impedance.    This 
analysis shows the reduction of the edge diffracted field discussed 
above is maintained from angles of zero (preceding case) to about 60° 
when the surface impedance is at the edge.    Figure 10 shows the back- 
scattered fields with zero and 188 ohms surface impedance.   Note that 
the lobes are decreased from 40o-100o.    For plane wave incidence as 
shown in Fig. 10 the effect of the edge that does not have impedance 
loading cannot be isolated from the edge with loading.    Consequently, 
the reduction in backscatter as shown in Fig. 10 represents a considerable 
reduction achieved by   the loaded edge.    This corresponds to the re- 
duction achieved in Fig. 8, but also demonstrates the wide angle 
coverage that can be achieved.   Thus, the above analysis does indicate 
that the desired control can be achieved. 

C.     The Infinite Wedge 

The hybrid methods discussed in Chapter II were programmed for 
the analysis of the infinite wedge with impedance loading.   The total 
current on a perfectly conducting wedge surface was calculated by the 
hybrid method of Eq. (22).   The currpnt was sampled using a 0.1X o»* 
smaller spacing between sampling points in the MM region.   The moment 
method region is Ix in length and each GTD matching point is 1.25A 
away from the edge tip.    Results for the surface current density and 
the diffracted field of a 30° conducting wedge with plane wave in- 
cidence are compared with GTD, as shown in Figs. 11-12.   Although the 
original hybrid method was found to yield reasonable results for the 
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Zs«(0.,0.)EACH SEGMENT» ■^ 

GTD 
270° 

Fig. 6—Comparison of patterns from 6TD and integral 
equation solution. 
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EACH SEGMENT = ~- 
o 

270° 

Fig. 7~Comparison of patterns from GTD and integral 
equation solution. 
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270° 

Fig. 8—Comparison of radiation patterns with and without 
surface impedance. 
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 Zs »(0.,0.) 

— — Zs»(0.,-188.5) 
270' 

Fig. 9~Cotnparison of radiation patterns with and without 
surface impedance. 
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0 60 
9 (DEGREES) 

Fig. 10—Plane wave backscatter from loaded and unloaded 
triangular cylinder. 
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total current and high-level fields of the scatterer, it fails to 
accurately predict low-level fields such as diffracted fields, as 
seen in Figs. 11-12.    Consequently, the original hybrid method was found 
to be inadequate to analyze the performance of impedance techniques. 
After some research it was found that the original hybrid method 
could be extended to provide accurate results for low level dif- 
fracted fields. 

As has been noted the key to the modified hybrid method is to 
seperate the surface current of an impedance loaded scatterer into 
two components:   the current Jc for the perfectly conducting scatterer 
and the change in current AJ due to impedance loading.    Since the cur- 
rent Jc for the perfectly conducting wedge is known, the current AJ 
on an impedance loaded wedge can be solved using the modified hybrid 
method.    The current AJ is sampled using a O.lx or smaller spacing 
between sampling points in MM region.    Since the current AJ decays 
rapidly away from any impedance loadings, the integrals of the modi- 
fied method converge rapidly.    This results in inproved efficiency as 
well as accuracy compared to that of the original hybrid method. 

The results of reduction in backscatter that can be achieved by 
impedance loading are shown in Figs. 13-18.   A reduction of more than 
15 dB is obtained in an angular range of 20° from grazing incidence for 
both 30° and 60° wedge.   These reductions were also demonstrated at 
three different frequencies representative of a 3:1 frequency band. 
The impedance loading required over the continuous frequency range 
was also calculated.    The required surface inpedance loading over 
the 3:1 frequency range and the reduction in backscatter from the 30° 
infinite wedge are given in Table I .    The surface impedance is plotted 
on a Smith chart in Fig. 19. 

D.     The Square Cylinder 

The accuracy of the modified hybrid method was checked against the 
integral equation or moment method solution for the 4A square cylinder 
with impedance loading as shown in Fig. 20.   This cylinder size is 
close to the limit possible with the pure moment method.   The accuracy 
of the modified hybrid method was found to be better than 6% even for low 
level fields.   The computed results of the two methods are so close that 
the difference can not be seen on Fig. 20. 

The scattered field from a square cylinder is shown in Fig. 21. 
The results for this case were calculated by all three methods:   the 
moment method, the modified hybrid method and the original hybrid 
method.    It was found that the original hybrid method gives good 
results for the 4x cylinder in contrast to the case of the infinite 
wedge.    Thus it can be concluded that the original hybrid method is 
sufficiently accurate for finite size scatterers for which the in- 
tegrations involved in the original hybrid method are not truncated. 
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Fig. 11—Diffracted current on perfectly conducting wedge. 

30 



o 
to 

o 
tvj 
K) 

Q 

■a 
O 
CO 

c 
>T3 

(\J ■o 
O 

o "O 

^J- !L 
CO > 

C 
o 
Ü •r- 
CM 

(/) o 
Ul (U 

n- 
o >> 

o iu 5 
(0 Q 

■o 

o -!-> 
eg U 

o 
CO 

O 

o 
10 

s- 

i 
o 
I 

C\J 

en 
•r- 
U. 

I 
o 
T 

m o m o in o m o 
(M CM IO ro *• * m 

1 1 1 l i 1 1 
(8P)    30011N9VN 

31 



o 

O 
(M 

Q. 

IO 0) 

c 
T3 

t 
o •r- 

00 (U 
tvj 

(0 

10 

o en 
c * •r— w 
3 

I/) 
■o 

o •r- 
«4- 

o 
CJ V) -o 

hi 
Ul 
CC 
O ■!-> 

UJ (0 

o o o 
in 

u> ^ 

o 
oo 

o 

u 

c 
0) 
c 
o 

o 

T3 

4-) 

«0 

■o 
LLI 

I 
i 

O) 

•     T 
m       o 
T     *t 

IO O IO o IO o 
CM ro IO * * IO 

1 1 1 1 1 1 
(8P)   3anilN9VW 

32 



(0 
• 

K) OL 
•r— 
u 
+J 
Ol 

(U 
o O 

C 

■o 
0J 

& 
•r- 

0) 
o u 
00 

3 
trt 

O) 
c 

•r" 

o 10 
3 

t 
CJ W) 

T3 
»~- 
0) 

•i— 
«4- 

o 
o 

-o 

CM w 

C o 
O </) 
UJ JS«; 

o o u 
(0 J3 

c 
o 

—"     & 

o 
00 

o 

o 
<J 

T) 
<U 
+J 
U 
«a 
i. 

•4- 

UJ 
I 
I 

o> 

IO 
1 

o 
T T 

O      n      o       m 
CM         (M         IO          IO 

1        I        1        1 
(QP)    30nilN9VW 

O 

1 1 
o 
IO 
I 

33 



I/) 
Q. 

•i— 
i- 

*-> 
IS) 

0) u 
c 
IB 

■o 

t 

c 
^1 
3 

43 
OJ 

0) 
4-> 
■»-> 

ta 
o 

o 
to 

£1 

C 

C 
o 

o o 

o 

LÜ 
I 
I 

IT) 

a> 

if) O m O to        o       "O K N       io      to 
I        I I         I        I 

(8P) 30nilN9VW 

o m o 
*■ * m 

1 l i 

34 



-8 

o 
(0 
IO • 

to 
Q. •^• 
J- 
•tJ 
IA 

o 
(M 0) 
K> o 

c 
lO 

■a 
QJ 

§■ 
•r- 

o 0) 
00 u 
(M <o <*- 

i- 
3 
V) 

O) 

O c 
* (/) 
(SJ 3 

10 
■o 

<u 

CVJ CO 2 
Ui Ü cc 4-> 
o «J 
LJ O 

oo 
to o 

(D 
J3 

o 
eg 

o 
oo 

o 

0> 

o u 

0) 
+J 
U 

i. 

TJ 

I 

o> 

IO o IO 9 IO o IO O IO 
1 1 1 

CM 
1 

CM 
1 

ro 
1 

K> 
1 1 

5' 
o 
IO 
I 

(8P)    30nilN0VW 

35 



OL 

+J 

0) o 
c 
to 
■a 

u 
(O 

s- 
3 

c 
•r- 
in 
3 

I— 

■o 

<u 

o 
in 

o 

o 

c 
o 
& 
o o 
•a 
Si 
o 
i- 

■o 

I 

en 

in 
I 

o 
7 

io      o IO o IO o to o 
(NJ ro ro * ^• IO 

1 1 i 1 1 1 
(8P)   BOnilNOVW 

36 



Q- 
•i— 
S- 

■t-> 
(/» 

<u 
o 
c 

■o 

0) 
o 

4- 
s- 
3 
(^ 

C 
•r- 

3 

(/) 
-o 

0) 
■4-> 
4J 
<0 
o 

o 

J3 

c 
(U 
c 
o 

o 

& 
o 
o 
■o 

Si 
s- 

■o 

I 
00 

en 

m o m o 
CM IO K) * 

I • 1 

in      o 
*      m 

l        I 

(BP) aamiNovw 

37 



TABLE I 

REDUCTION OF BACKSCATTER AT GRAZING INCIDENCE FOR 30° WEDGE 

Vno d/x W/A 

1.75+J1.6 0.05 0.05 
1.85+jl.O 0.06 0.06 
1.7 +J0.3 0.07 0.07 
1.45-jO.l 0.08 0.08 
1.15-J0.3 0.09 0.09 
0.9 -jO.5 0.1 0.1 
0.7 -jO.55 0.11 0.11 
0.5 -jO.6 0.12 0.12 
0.35-J0.6 0.13 0.13 
0.23-J0.6 0.14 0.14 
0.1  -jO.6 0.15 0.15 

Reduction (dB) 

25 
23 
19.5 
18 
21 
30 
21.5 
21 
23 
27 
24 

d w 
**co 
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Fig. 19—Surface impedance to reduce backscatter 
from an infinite wedge over a 3:1 
frequency band. 
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MOMENT METHOD 

I BO8 

 MMGTD AJ 

 MMGTD J*0' 

w   =0.2X 

MMGTD 

Fig. 21—Scattered field of conducting square cylinder 
with surface impedance loading. 
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E.     A Two-dimensional Wing Model 

The original hybrid method was used to analyze the two-dimensional 
wing model shown in Fig. 22(a).    This wing model should provide a good 
simulation for a practical aircraft wing cross section.    However, the 
small wedge (angle %60) of the wing model of Fig. 22(a) was found to 
cause a computational problem in the application of the hybrid method. 
A^ter investigation of this problem it was discovered that the small 
weuge angle causes some of the matching points used in the point 
matching region around the edge to be too close for practical computation 
as shown in Fig. 22(b).    This problem was overcome by truncation of the 
wedge tip as shown in Fig. 22(c).    The truncation still permits a 
practical analysis of the edge loading because the trailing edge of 
the wing is very thin in wavelengths. 

The current in the MM regions is again sampled using a O.lx or 
smaller spacing between sampling points.    Since the primary interest 
is in the angular range which is close to grazing to the wedge arm, 
the diffracted currents from the wedge-cylinder junction are analyzed 
along or near the shadow boundary.   The form Doe"^ + Di  (e^M/ZT 
is used forthe diffracted currents from the wedge-cylinder junction, 
while D (e"Jk,1)//h" is used for the diffracted currents from the wedge 
tip, as shown in Fig. 23. 

The backscatter reduction of the two-dimensional wing model as a 
function of wing size and geometry, including the effect of the leading 
edge, has been investigated.    The scattered fields for Zs = 0 and 
Zs = n0 on the leading edge were checked by using the hybrid method 
and the moment method for a -= 0.075X, O.lx, 0.15x, 0.2x, 0.25x and 
0.3X.    Figures 24-25 show some of the typical checks.    Tables II and 
III show the backscatter reduction from the leading and tniling 
edge for various wing size.    The leading edge is dominant for wing 
radii greater than O.lx.    However, the leading edge contribution can 
be reduced by more than 12 dB for a ^0.2x, as shown in Fig. 26.    This 
is achieved by covering the leading edge with a surface impedance 
Zs = no-    For wing radii smaller than O.lx, the trailing edge con- 
tribution is more important.    By loading the trailing edge with a O.lx 
wide surface impedance, the backscatter for a thin wing can be reduced 
by 10.19 dB, as shown in Fig. 27.   The backscatter reduction from the 
leading and trailing edge, respectively, as a function of incidence 
angle is also calculated and shown in Tables IV and V.    It is seen 
from Fig. 28 that further reduction can be obtained if both edges are 
loaded.   The reduction in Fig. 28 is 11.33 dB, compared to   5.79 dB 
when only the leading edge is loaded and 5.37 dB when only the trailing 
edge is loaded. 
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Fig. 22—Point-matching problem for small-angle wedge. 
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O.lX 

Fig. 23--MMGTD method applied to the two-dimensional 
wing model. 
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Fig. 24—Comparison of bistatic scattered fields obtained 
using MM and MMGTD solutions for a wing foil with 
impedance loading. 
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Fig. 25--Comparison of bistatic scattered feilds obtained using MM 
and MMGTD solutions for a wing foil with impedance 
loading. 
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TABLE II 

BACKSCATTER REDUCTION BY LOADING THE LEADING EDGE 

Radius (a) 

0.3A 
0.25A 
0.2X 
0.15A 
O.U 
0.075A 

Backscatter Reduction (dB) 
Moment Method MMGTD 

17.77 
14.89 
12.28 
9.42 
5.85 
3.30 

18.00 
14.92 
12.24 
9.40 
5.79 
3.30 

O.IX 

TABLE III 

BACKSCATTER REDUCTION BY LOADING THE TRAILING EDGE 

Radius (a) 

0.3A 
0.25A 
0.20A 
0.15A 
0.10A 
0.075A 

Backscatter Reduction (dB) 

-1.0 
0.05 
1.29 
2.06 
5.37 

10.19 
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Fig. 26--Comparison of bistatic scattered fields for wings 
with and without impedance loading. 
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Fig. 27--Comparison of bistatic scattered fields for wings with 
and without impedance loading. 
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TABLE IV 

BACKSCATTER REDUCTION OF WING MODEL AS A FUNCTION OF INCIDENCE ANGLE 

Incidence Angle (e) 

0 
3 
8 

10 

Backscatter Reduction (dB) 

18.00 
17.57 
16.47 
12.08 

O.IX 

TABLE V 

BACKSCATTER REDUCTION OF WING MODEL AS A FUNCTION ON INCIDENCE ANGLE 

Incidence Angle (e) 

0 
5 

10 

Backscatter Reduction (dB) 

10.19 
11.13 
3.12 

0.1 X 
d = w « 0.1 X 

^«i.o-j-o.e 
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Fig. 28—Comparison of bistatic scattered fields for win gs 
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F.     The Thin Strip 

The infinitely long thin strips of 1 and 2 wavelength wide and 0.1 
wavelength thick are studied by moment method.   The backscatter reduction 
will be used to check the results obtained from a three-dimensional 
finite thin plate discussed in Chapter V.    Typical results for 1 and 
2 wavelength strips loaded with a O.U wide surface impedance are 
shown in Figs. 29 and 30.    Tables VI and VII show the backscatter 
reduction as a function of incidence angle. 

52 



_ d-w-O.lX 

-^--0.7-j0.6 

Fig. 29—Comparison of bistatic scattered fields for strips 
with and without impedance loading. 
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 ■^d«w»0.IX 

^-0.7-J 0.6 

Fig. 30—Comparison of bistatic scattered fields for strips 
with and without impedance loading. 
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TABLE VI 

BACKSCATTER REDUCTION OF THIN STRIP AS A FUNCTION OF INCIDENCE ANGLE 

Backscatter Reduction (dB) Incidence Angle (e) 

0 
3 
5 

10 

15.61 
14.97 
13.83 
8.97 

i |dw 
-IX- 

O.IX 

d« w=O.IX 

6 

^--0.7-j-0.6 

TABLE VII 

BACKSCATTER REDUCTION OF THIN STRIP AS A FUNCTION OF INCIDENCE ANGLE 

Incidence Angle (e) 

0 
3 
5 

10 

Backscatter Reduction (dB) 

16.45 
15.89 
13.39 
5.45 

i d * 
-2X 

**L 
T" dw 

O.IX 

d«w «O.IX *• ~ Ii«0.7-j-0.6 
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CHAPTER V 

THE REDUCTION OF BACKSCATTERED 
FIELD — THREE-DIMENSIONAL CASE 

A. Introduction 

The results previously discussed yield the necessary surface 
impedance loadings required to achieve reduction in the backscatter. 
However, a way to practically implement the required surface impedance 
is also needed.    One of the most promising ways to implement the sur- 
face impedance is a collinear array of rectangular slots located along 
the edge. 

In this chapter, the thin conducting plate with a loaded slot is 
treated.    The reductions in backscatter of various sizes of plates are 
also illustrated.    It is concluded that the backscatter reduction can 
be achieved over a 2:1  frequency band in a wide angular aspect. 

B. The Thin Plate 

Since the thin square plate with a loaded slot antenna can provide 
the information about the affect of loading, the backscatter reduction 
of the plate is investigated.   For near grazing angles of incidence, 
the trailing edge of the plate is the dominant contributor to the 
scattering of the component of the electric field which is normal to 
the edge (vertical polarization).    On the other hand, the leading edge 
contribution is the dominant factor to the scattering of the component 
of the electric field which is parallel to the edge (parallel 
polarization). 

The reduction of the backscatter of the plate for the vertical 
polarization can be achieved by inserting a slot sufficiently near the 
trailing edge of the plate.   The axis of the slot should be oriented 
parallel to the trailing edge in order for the slot to have maximum 
effect.    A lumped load impedance may be inserted in the slot to tune 
the slot.    The size, location and the load impedance of the slot have 
to be chosen properly in order to achieve a reduction in backscattering 
cross section over a wide frequency band. 

The backscattering analysis for the plate with loaded slot has 
been carried out by approximating the conducting plate with a slot by 
a conducting wire grid model.   The integral equations for the scat- 
tering of electromagnetic plane wave by the wire grid structure are 
then solved by the numerical techniques.   A typical wire grid model of 
a half-wave slot in one wavelength square plate is illustrated in Fig. 
31.   The lumped load impedance of the slot antenna is obtained by 
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inserting a proper terminal load impedance at the center c of the wire 
segment abc in Fig.  31. 

a 

' 
b 

Fig. 31--Conducting wire grid model of a half-wavelength 
long slot in a one wavelength square con- 
ducting plate. 

The wire-grid structure is considered as an array of thin wire 
segments. Current-sampling points or terminals are defined at each 
wire junction. 

Assume that each segment in the wire structure has a circular 
cylindrical surface and the wire radius "a" is much smaller than the 
wavelength A, and the wire length is much greater than the radius. 
Furthermore, the circumferential  component J^ of the surface current 
density will be neglected.    If we consider tne axial component of the 
surface current density to be independent of $, then the surface cur- 
rent density of the thin wire structure is given by 

(40) ^U) 2*3       Zira 

where z is the coordinate along the wire axis and I(£) is the total 
current.    Substituting Eq.  (40) into Eq.  (8) and using the Impedance 
boundary condition of Eq.  (9) leads to 
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(41)        -f    i(;) (EV H"y 

where L denotes the overall wire length and 

(42) (^•E^-M.-^dv 

(43) 
r2TT. 

= 57  \n^ * 

(«> "I = k  J 
2lT 

0 
;. H"1 

In order to solve for the unknown current distribution in Eq.  (41), 
a sinusoidal dipole is used as a test source.    The current distribution 
on a V test dipole is 

xLP, sinh YU-JU)       ä       P0 sinh YU«-«,) 
(45) Hi) = -L-! L_  + 1z     J     .   .   .-2... 

sinh yi 1 sinh YH. 

where P, and P« are unit pulse functions and 

Y = jujpe" 

The current distribution on the wire structure is expanded in a finite 
series of sinusoidal functions, 

(46) fU)-^    I^U). 

Substituting Eq. (46) into Eq. (41) gives 

N 
I     ln

1
m, = Vm        m = 1,2 ... N is      n mn       m (47) 
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where 

c8'     z
m n W < - ZsH»>dt 

Equation (47) can be solved for the unknown current I   by numerical 
techniques. 

If a lumped impedance Z,n is inserted at the m^h current sampling 
points of the wire structure, there is a voltage drop ImZm across the 
load.    Therefore, in the delta gap model, the lumped loads simply 
introduce a new term in Eq.   (47) so the right-hand side becomes 
V^I Z .    Transferring the last term, we obtain 

N 

„r,   n   mn       m mn'       m nsl 

Once the current distribution is solved, the scattered field can be 
readily calculated. 

The main computer program for the analysis of the backscattering 
of a plate is based on the computer subroutines developed by 
Richmond [33].    In order to model the plate with slot accurately, 
it is found that the spacing between wire grid should be as small as 
x/8, at least in the vicinity of the slot. 

The plate with a slot can be considered as an antenna.    Using the 
compensation theorem and the superposition principle, the scattered 
field from a loaded antenna may be interpreted as a load independent 
term called the structural scattering plus a load dependent term 
called the antenna mode scattering (see Appendix A). 

The backscattering patterns in the plane perpendicular to the 
slot axis are calculated for different sizes of plates and slots using 
various load impedances.    From Eq.  (52) (see Appendix A) we see that 
if the short and open circuit scattered field fron a loaded antenna 
are known (either measured or calculated) the scattered field for 
arbitrary load can be readily calculated.   This is brought to the 
author's attention by Richmond [401.    Considerable amount of computer 
time can be saved by using Eq.  (52) to find the optimum load impedance 
for backscatter reduction.    The backscattered field calculated by 
directly using the wire-grid model is compared with that obtained by 
Eq.  (52), as shown in Table VIII and IX.   The reductions of back- 
scatter are shown in Fiqs.  32-37.    The load impedance which is required 
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to reduce the backscatter from the trailing edge of the square plate 
over a 2:1  frequency band is plotted on a Smith chart in Fig.  38,    It 
is seen from Figs.  32-37 that a substantial reduction (> 15 dB) in the 
backscattering cross section can be achieved when the slot is properly 
loaded.    In order to achieve backscattering reduction 'for near grazing 
incidence on either edge, two slots, one on each edge, were used on the 
square plate.    It is seen from Fig.   37 that the reduction obtained by 
using two slots is nearly as good as that for one slot. 
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TABLE VIII 

COMPARISON OF THE SCATTERED FIELD OF A LOADED SQUARE PLATE 

0.5X x 0.5X Plate, Z,   = 14.87 - j.200 

Calculated by 
Wire-Grid Model 

0 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
/O 
75 
80 
85 
90 
95 

100 
105 
110 
115 
120 
125 
130 
135 
140 
145 
150 
155 
160 
165 
170 
175 

Renl  Part       Imaginary Part 

0, 
-0. 
-0, 
-0, 
-0, 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
00099 
00413 
00994 
01924 
03300 

.05215 
,07730 
.10832 
.14388 
.1811o 
.21556 
.24136 
.25229 
.24316 
.21145 
.15863 
.09059 
.01672 
.05215 
.10646 
.14020 
.15206 
.14515 
.12536 
.09940 
.07303 
.05005 
.03220 
.01958 
.01133 
.00627 
.00329 
.00159 
.00064 
.00015 

0.0 
-0.00165 
-0.00652 
-0.01428 
-0.02430 
-0.03553 
-0.04635 
-0.05449 
-0.05709 
-0.05094 
-0.03302 
-0.00130 
0.04435 
0.10127 
0.16376 
0.22357 
0.27131 
0.29873 
0.30089 
0.27770 
0.23405 
0.17843 
0.12055 
0.06883 
0.02868 
0.00193 

-0.01260 
-0.01787 
-0.01732 
-0.01395 
-0.00987 
-0.00626 
-0.00354 
-0.00175 
-0.00069 
-0.00016 

Calculated by 
Eq.  (52) 

Real Part Imaginary Part 

0.00000 0.00000 
-  .00098 -  .00168 
-  .00412 -  .00654 
-   .00992 -  .01428 
-  .01925 -  .02431 
-  .03303 -  .03555 
-  .05212 -  .04638 
-  .07731 -   .05453 
-  .10833 -  .05711 
-  .14390 -   .05091 
-  .18110 -   .03298 
-   .21549 -   .00128 
-   .24135 .04437 
-   .25226 .10131 
-   .24306 .16377 
-  .21134 .22359 
-  .15851 .27129 
-   .09049 .29861 
-  .01663 .30077 

.05221 .27751 

.10649 .23386 

.14009 .17824 

.15193 .12033 

.14500 .06867 

.12519 .02857 

.09920 .00192 

.07283 -  .01260 

.04988 -  .01781 

.03208 -  .01725 

.01954 -  .01387 

.01128 -  .00977 

.00620 -  .00623 

.00328 -  .00352 

.00160 -  .00171 

.00062 -  .00067 

.00012 -  .00019 
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TABLE IX 

COMPARISON OF THE SCATTERED FIELD OF A LOADED SQUARE PLATE 

0.6X x 0.6X Plate, Z. = 56.16 - j.300 

Calculated by Calculated by 
Wire-Grid Model Eq.  (52) 

e Real Part Imaginary Part Real Part Imaginary Part 

0 0.0 0.0 0.00000 0.00000 
5 -0.00117 -0.00207 - .00117 - .00206 

10 -0.00489 -0.00815 -  .00488 -  .00817 
15 -0.01180 -0.01790 -  .01179 -  .01788 
20 -0.02291 -0.03059 -  .02292 -  .03058 
25 -0.03948 -0.04503 - .03948 - .04502 
30 -0.06282 -0.05934 -  .06282 -  .05936 
35 -0.09400 -0.07082 -  .09400 -  .07082 
40 -0.13337 -0.07582 -  .13336 -  .07583 
45 -0.17991 -0.06990 -  .17992 -  .06990 
50 -0.23051 -0.04823 -  .23052 -  .04822 
55 -0.27933 -0.00665 -  .27934 -  .00663 
60 -0.31763 0.05672 -  .31762 .05675 
65 -0.33470 0.13953 -  .33465 .13950 
70 -0.32014 0.23350 - .32011 .23345 
75 -0.26748 0.32433 -  .26747 .32423 
80 -0.17801 0.39394 -  .17806 .39378 
85 -0.06290 0.42539 -  .06305 .42521 
90 0.05809 0.40886 .05783 .40870 
95 0.16177 0.34612 .16140 .34607 

100 0.22891 0.25106 .22845 .25113 
105 0.25057 0.14527 .25013 .14555 
110 0.23041 0.05077 .23007 .05121 
115 0.18207 -0.01702 .18190 -  .01646 
120 0.12317 -0.05287 .12320 -  .05228 
125 0.06903 -0.06094 .06920 - .06040 
130 0.02873 -0.05091 .02902 - .05048 
135 0.00458 -0.03327 .00492 -  .03297 
140 -0.00609 -0.01603 -  .00575 -  .01586 
145 -0.00809 -0.00345 - .00780 - .00337 
150 -0.00601 0.00351 - .00578 .00351 
155 -0.00310 0.00587 -  .00293 .00583 
160 -0.00094 0.00536 - .00083 .00531 
165 0.00008 0.00362 .00013 .00360 
170 0.00026 0.00177 .00029 .00176 
175 0.00010 0.00046 .00009 .00045 
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Fig. 32—Use of a loaded slot for reduction of an edge diffracted 
field from a flat plate. 
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Fig.  33--Use of a loaded slot for reduction of an edge diffracted 
field from a flat plate. 
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Fig. 34--Use of a loaded slot for reduction of an edge diffracted 
field from a flat plate. 
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Fig. 35—Use of a loaded slot for reduction of an edge diffracted 
field from a flat plate. 
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Fig.   37.   Backscattering cross secticn (oee/A    for the e polarization) 
of a square conduction plato with one and two slots. 
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■ STANCE 

Fig. 38—Load impedance required for reduction of wedge 
diffracted backscattered fields. 
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CHAPTER VI 

CONCLUSIONS 

The application of impedance loading techniques for the reduction 
of backscatter from radar targets were studied.   The hybrid methods 
which combine the GTD and the moment method were used to analyze the 
backscattering from various geometries such as the impedance-loaded 
infinite wedge, thin strip and a two-dimensional wing model.   The 
surface impedance was used to simulate a slot antenna loaded with a 
terminal impedance.   The original hybrid method was found inadequate 
to analyze the reduction in scattering by edge loading an infinite 
wedge.   A solution to this difficulty was attained by the development 
of the AJ method. 

The effect of the edge diffraction sources can be considerably 
reduced over a 3:1 frequency band by the use of a loaded slot near 
or at an edge.   These reductions are found to cover an angular range 
of 20° from grazing. 

In order to include the effect of the leading edge, a two- 
dimensional wing model which provides a good simulation of a practical 
aircraft wing cross section was also studied.   The backscatter re- 
ductions for the wing model were calculated as a function of wing size 
and geometry. 

The slot-loaded square plate which is a basis of an array of 
finite slots along the edge of a three-dimensional wing model was 
analyzed by a wire grid model.   The array of loaded slots is one of 
the most promising ways to implement the necessary surface impedance 
loadings required to achieve reductions in the backscatter.   The back- 
scatter reduction of the square plate can be achieved at least over 
a 2:1 frequency band.    It is also demonstrated that the use of two 
slots on the plate can reduce the backscattering for near grazing 
incidence on either edge. 
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APPENDIX A 

THE SCATTERED FIELD OF AN ANTENNA 
AS A FUNCTION OF LOAD IMPEDANCE 

The scattered field from an impedance-loaded object can be 
expressed as a superposition of the field scattered by the un- 
loaded object and the field reradiated by the load.    In attempting 
to predict the scattered field from an antenna as a function of the 
load impedance many researchers have presented different functional 
forms [8,35,36,37,38,39].    In the form discussed here, the scattered 
field can be interpreted as a load independent term called the 
structural scattering plus a term called antenna mode scattering. 

Consider the scattering of electromagnetic wave by an impedance- 
loaded antenna as shown in Fig. 39.   Using the compensation theorem, 
the load may be replaced by a voltage source.   By superposition 
principle, the scattered field is broken into two parts, one due to 
the incident field on the shorted antenna and the other to the 
equivalent voltage source exciting the antenna.    Therefore, the 
scattered field by an antenna as a function of the load impedance 
is given by 

(50) E(Z.) = E(0) - Y-k-   1(0)^ 

where 

and 

E{0) = the field scattered by the antenna with Z =0, that is, 
a short circuit for the load, 

1(0) = the antenna terminal current with Z   = 0, 

E      = the field radiated by the antenna when excited by a 
unit current source. 

Z .Z.   are antenna and load inpedance, respectively. 
a   K. 

Let the load impedance approach infinity, that is, open circuit, 
then Eq.  (50) becomes 

E(») = E(0) - 1(0)^ 

or 

(51) 1(0)^= E(0) -#(») . 
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Fig. 39—Conpensation and superposition theorem applied 
to scattering problem. 

Substituting Eq.  (51) into Eq. (50) gives 

(52) 
Z[E(0)-EH] 

r(y = E(0) - ^J-^J-  
H 3 

Za E(0) + 7l E(-) 

Equation (52) can be used to calculate the scattered field for arbitrary 
load if the open and short circuit scattered field from the antenna are 
known. 
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